Abstract

We apply the concept of a frequency-dependent effective temperature based on the fluctuation-dissipation ratio to a driven Brownian particle in a nonequilibrium steady state. Using this system as a thermostat for a weakly coupled harmonic oscillator, the oscillator thermalizes according to a canonical distribution at the respective effective temperature across the entire frequency spectrum. By turning the oscillator from a passive thermometer into a heat engine, we realize the cyclic extraction of work from a single thermal reservoir, which is feasible only due to its nonequilibrium nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call