Abstract

A spin-glass system with a smooth or fractal outer surface is studied by renormalization-group theory, in bulk spatial dimension d=3. Independently varying the surface and bulk random-interaction strengths, phase diagrams are calculated. The smooth surface does not have spin-glass ordering in the absence of bulk spin-glass ordering and always has spin-glass ordering when the bulk is spin-glass ordered. With fractal (d>2) surfaces, a sponge is obtained and has surface spin-glass ordering also in the absence of bulk spin-glass ordering. The phase diagram has the only-surface-spin-glass ordered phase, the bulk and surface spin-glass ordered phase, and the disordered phase, and a special multicritical point where these three phases meet. All spin-glass phases have distinct chaotic renormalization-group trajectories, with distinct Lyapunov and runaway exponents which we have calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call