Abstract
Solar-powered aircraft require electric drives for the main propulsion system. It is critical that these drives provide both very high efficiency and low mass. This paper discusses the relative merits of different machine topologies based upon maximizing efficiency, taking into account power-electronic losses, motor losses, mass, and size penalties. Laminated machines are usually limited in their efficiency at light load because of their iron losses. This paper shows how, by combining a high pole number with an ultralow loss lamination material, these machines can be more efficient than other more complex arrangements which have been adopted by others. A demonstrator machine has been built and predicted efficiencies have been validated by test. It has then been used to propel a solar plane to over 60000 feet and extend the aircraft flight-endurance world record from 30 to 84 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.