Abstract

We study the phenomenon of many-body localization (MBL) in an interacting system subjected to a combined DC as well as a square wave AC electric field. First, the condition for the dynamical localization, coherent destruction of Wannier-Stark localization and super Bloch oscillations in the non-interacting limit, are obtained semi-classically. In the presence of interactions (and a confining/disordered potential), a static field alone leads to "Stark many-body localization", for sufficiently large field strengths. We find that in the presence of an additional high-frequency AC field, there are two ways of maintaining the MBL intact: either by resonant drive where the ratio of amplitude to the frequency of the drive ($A/\omega$) is tuned at the dynamical localization point of the non-interacting limit or by off-resonant drive. Remarkably, resonant drive with $A/\omega$ tuned away from the dynamical localization point leads to a \emph{coherent destruction of Stark-MBL}. Moreover, a pure (high-frequency) AC field can also give rise to the MBL phase if $A/\omega$ is tuned at the dynamical localization point of the zero dc field problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.