Abstract
Living systems ensure their fitness by self-regulating. The optimal matching of their behavior to the opportunities and demands of the ever-changing natural environment is crucial for satisfying physiological and cognitive needs. Although homeostasis has explained how organisms maintain their internal states within a desirable range, the problem of orchestrating different homeostatic systems has not been fully explained yet. In the present paper, we argue that attractor dynamics emerge from the competitive relation of internal drives, resulting in the effective regulation of adaptive behaviors. To test this hypothesis, we develop a biologically-grounded attractor model of allostatic orchestration that is embedded into a synthetic agent. Results show that the resultant neural mass model allows the agent to reproduce the navigational patterns of a rodent in an open field. Moreover, when exploring the robustness of our model in a dynamically changing environment, the synthetic agent pursues the stability of the self, being its internal states dependent on environmental opportunities to satisfy its needs. Finally, we elaborate on the benefits of resetting the model's dynamics after drive-completion behaviors. Altogether, our studies suggest that the neural mass allostatic model adequately reproduces self-regulatory dynamics while overcoming the limitations of previous models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.