Abstract
Physical human–robot interaction performance of present rehabilitation robots are still not satisfactory in the clinical practice. Especially, the work space where the robot can be driven smoothly by users is still very limited, which prevents rehabilitation robots from being applied successfully. In this study, a new concept of drivable space is proposed to evaluate the work spaces of rehabilitation robots, and a method for expanding the drivable space is designed based on the dynamics of the coupled human–robot system and human joint characteristics. First, the definition of drivable space is presented based on comparison of human joint torques, and the minimal torques necessary to drive robot joints, which is mainly determined by the torque estimation errors for general rehabilitation robots driven smoothly by motors. Therefore, a method for improving torque estimation accuracies based on dynamics modeling is then designed. A data-driven error prediction method based on Gaussian process regression is proposed to adaptively compensate the model errors, by which the most accurate dynamic model so far for the coupled system can be obtained, and a method for generation of the training dataset, which is used in error prediction, is designed as well. Moreover, the torque–angle relationship of human joints is modeled and used to optimize the torque error distribution, by which it can be proven that the drivable space can be further expanded. Finally, performance of the proposed methods are demonstrated and validated by experiments carried out on a lower limb rehabilitation robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.