Abstract
In this paper we describe the compactification of the Drinfeld modular curve. This compactification is analogous to the compactification of the classical modular curve given by Katz and Mazur. We show how the Weil pairing on Drinfeld modules that we defined in earlier work gives rise to a map on the Drinfeld modular curve. We introduce the Tate–Drinfeld module and show how this describes the formal neighbourhood of the scheme of cusps of the Drinfeld modular curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.