Abstract
Let $G$ be a reductive complex algebraic group. We fix a pair of opposite Borel subgroups and consider the corresponding semiinfinite orbits in the affine Grassmannian $Gr_G$. We prove Simon Schieder's conjecture identifying his bialgebra formed by the top compactly supported cohomology of the intersections of opposite semiinfinite orbits with $U(\check{\mathfrak n})$ (the universal enveloping algebra of the positive nilpotent subalgebra of the Langlands dual Lie algebra $\check{\mathfrak g}$). To this end we construct an action of Schieder bialgebra on the geometric Satake fiber functor. We propose a conjectural construction of Schieder bialgebra for an arbitrary symmetric Kac-Moody Lie algebra in terms of Coulomb branch of the corresponding quiver gauge theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.