Abstract

Composite materials are widely used in aeronautical structures. Assembling the various parts involved requires machining operations, especially drilling. When drilling, a number of defects that diminish the structure breaking strength are propagated. Delamination on hole exit is considered to be the main such defect, this being directly related to the drilling axial force. Determining the drilling critical thrust force at delamination is thus crucial. A number of studies have been conducted into this question but are only applicable to small diameter drilling operations cases. This paper proposes an orthotropic analytical model with the aim of calculating the drilling critical thrust force with a large diameter drill. New assumptions are then proposed. The plate element located under the cutter is broken down into a number of zones in relation to the cutter different active parts. A digital model is developed to validate analytical modelling. Punching tests were also conducted to validate the choices of boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call