Abstract
Deepwater drilling risers have a substantial portion (>70%) of buoyancy modules covering their entire length. The circular cross-section of these modules acts as a bluff body exhibiting significant Vortex-Induced Vibration (VIV) response, resulting in fatigue in the riser/wellhead and drag force amplification of the riser. Drilling operations can be suspended when the drag force on the riser adversely affects the top and bottom angles, a response which is exacerbated by drag force amplification due to VIV. In 2015 and 2016, Longitudinally Grooved Suppression (LGS)1 technology was developed to field qualified Technology Readiness Level (TRL of 6) [1] offering a technical advantage to drilling operators over existing options. In order to investigate the relative performance and quantify the benefits of LGS over conventional cylindrical Drilling Riser Buoyancy Modules (DRBMs) with and without fairings, a series of case studies encompassing typical operating conditions at drilling locations in several regions around the world (including the Gulf of Mexico, Brazil, the North Sea, and Australia) have been carried out to examine the performance in terms of drag (affecting operability due to top angle) and fatigue damage rate of the riser. The results indicate that LGS outperforms conventional buoyancy risers and fairings-equipped risers with regard to riser operability limits and fatigue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.