Abstract

Electrochemical micromachining (EMM) is one of the best micromachining techniques for machining electrically conducting, tough, and difficult-to-machine materials with suitable machining parameter combinations. For the micro-fabrication of components like nozzle plate for ink jet printer head and delicate 3D electronic circuit board components, EMM is predominantly used. In this paper, the effect of process parameters such as such as electrolyte concentration, machining voltage, frequency, and duty cycle on the material removal rate (MRR) and overcut were studied using copper workpiece. According to Taguchi’s quality design concepts, an L18 orthogonal array is used. ANOVA is also performed to determine the most significant parameter that influences the EMM process. The optimum process parameters for lower overcut and higher MRR are found out and confirmation tests were carried out to validate the prediction. The confirmation test results show 19 and 20.78 % improvements of overcut and MRR, respectively, with respect to the initial parametric setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.