Abstract

The paper details experimental results when drilling small holes (1.5 mm diameter cemented carbide drills with varying end point and helix geometry) in thin quasi-isotropic, unbacked carbon fibre reinforced plastic (CFRP) laminate (typical cutting time ∼0.4 s/hole). The study utilised an L12 Taguchi fractional factorial orthogonal array with analysis of variance (ANOVA) employed to evaluate the effect of drill geometry and drilling conditions on tool life and hole quality. Main effects plots and percentage contribution ratios (PCR) are detailed in respect of response variables and process control factors. More conventionally, tool wear and cutting force data are plotted/tabulated, together with micrographs of hole entry/exit condition and internal hole damage. Drill geometry and feed rate in general had the most effect on measured outputs. Thrust force was typically below 100 N at test cessation; however, drill wear progression effectively doubled the magnitude of force from test outset. Entry and exit delamination factors ( F d) of ∼1.3 were achieved while the maximum number of drilled holes for a tool life criterion VB Bmax of ≤100 μm was 2900 holes using a stepped, uncoated drill with a feed rate of 0.2 mm/rev.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.