Abstract

AbstractEurope’s largest gas field, the Groningen field (the Netherlands), is widely known for induced subsidence and seismicity caused by gas pressure depletion and associated compaction of the sandstone reservoir. Whether compaction is elastic or partly inelastic, as implied by recent experiments, is a key factor in forecasting system behavior and seismic hazard. We sought evidence for inelastic deformation through comparative microstructural analysis of unique drill core recovered from the seismogenic center of the field in 2015, 50 yr after gas production started, versus core recovered before production (1965). Quartz grain fracturing, crack healing, and stress-induced Dauphiné twinning are equally developed in the 2015 and 1965 cores, with the only measurable effect of gas production being enhanced microcracking of sparse K-feldspar grains in the 2015 core. Interpreting these grains as strain markers, we suggest that reservoir compaction involves elastic strain plus inelastic compression of weak clay films within grain contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.