Abstract

Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) has been employed along with chemical and isotope transients to study the catalytic CO hydrogenation over Co/MgO catalysts in a single fixed-bed reactor at T = 523 K and ambient pressure conditions (H2/CO = 3). According to the operando DRIFTS measurements, the catalyst surface contains hydroxyl groups, adsorbed CO, formate, and methylene groups in the steady-state of the reaction. Transient experiments following fast changes in the feed (chemical transient kinetics, CTK) or isotope composition (steady-state isotopic transient kinetic analysis, SSITKA) have been carried out during DRIFTS and demonstrate that the formate/methylene “seen by DRIFTS” plays no role as imminent intermediates of the ambient pressure Fischer−Tropsch (FT) reaction. The SSITKA experiments (replacing 12CO by 13CO) show that the exchange rate of formate/methylene is significantly lower than that of ethane, which is one of the main reaction products of CO hydrogenati...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.