Abstract

Reading is one of the most popular leisure activities and it is routinely performed by most individuals even in old age. Successful reading enables older people to master and actively participate in everyday life and maintain functional independence. Yet, reading comprises a multitude of subprocesses and it is undoubtedly one of the most complex accomplishments of the human brain. Not surprisingly, findings of age-related effects on word recognition and reading have been partly contradictory and are often confined to only one of four central reading subprocesses, i.e., sublexical, orthographic, phonological and lexico-semantic processing. The aim of the present study was therefore to systematically investigate the impact of age on each of these subprocesses. A total of 1,807 participants (young, N = 384; old, N = 1,423) performed four decision tasks specifically designed to tap one of the subprocesses. To account for the behavioral heterogeneity in older adults, this subsample was split into high and low performing readers. Data were analyzed using a hierarchical diffusion modeling approach, which provides more information than standard response time/accuracy analyses. Taking into account incorrect and correct response times, their distributions and accuracy data, hierarchical diffusion modeling allowed us to differentiate between age-related changes in decision threshold, non-decision time and the speed of information uptake. We observed longer non-decision times for older adults and a more conservative decision threshold. More importantly, high-performing older readers outperformed younger adults at the speed of information uptake in orthographic and lexico-semantic processing, whereas a general age-disadvantage was observed at the sublexical and phonological levels. Low-performing older readers were slowest in information uptake in all four subprocesses. Discussing these results in terms of computational models of word recognition, we propose age-related disadvantages for older readers to be caused by inefficiencies in temporal sampling and activation and/or inhibition processes.

Highlights

  • Reading, one of the most complex activities of the human brain, is a life-long learning process (Wolf, 2007; Schrott and Jacobs, 2011), which is performed effortlessly and routinely by most individuals even in old age

  • The 4 × 3 linear mixed-effect model yielded a main effect of task, χ2(3) = 867.0, p < 0.001 and age, χ2(2) = 499.3, p < 0.001, as well as the significant interaction of both factors, χ2(6) = 41.0, p < 0.001

  • Low-performing older adults are generally slowest in information uptake in all four reading subprocesses

Read more

Summary

Introduction

One of the most complex activities of the human brain, is a life-long learning process (Wolf, 2007; Schrott and Jacobs, 2011), which is performed effortlessly and routinely by most individuals even in old age. It is still an open issue to what extent age-related changes in perceptual-attentional or higher cognitive processes influence this important daily life activity (Froehlich and Jacobs, 2016). Considering the multitude of subprocesses underlying visual word recognition and reading, it is of interest to investigate how age affects these subprocesses. The aim of the present study was to systematically investigate the impact of aging on four basic subprocesses of reading (sublexical, lexical, phonological, and semantic) in a model-guided way using hierarchical diffusion modeling

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call