Abstract

Radio detection at high time-frequency resolutions is a powerful means of remotely studying electron acceleration processes. Radio bursts have characteristics (polarization, drift, periodicity) making them easier to detect than slowly variable emissions. They are not uncommon in solar system planetary magnetospheres, the powerful Jovian “short bursts (S-bursts)" induced by the Io-Jupiter interaction being especially well-documented. Here we present a detection method of drifting radio bursts in terabytes of high resolution time-frequency data, applied to one month of ground-based Jupiter observations. Beyond the expected Io-Jupiter S-bursts, we find decameter S-bursts related to the Ganymede-Jupiter interaction and the main Jovian aurora, revealing ubiquitous Alfvénic electron acceleration in Jupiter’s high-latitude regions. Our observations show accelerated electron energies are distributed in two populations, kilo-electron-Volts and hundreds of electron-Volts. This detection technique may help characterizing inaccessible astrophysical sources such as exoplanets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.