Abstract
Abstract A basin-scale, reduced-gravity model is used to study how drifter launch strategies affect the accuracy of Eulerian velocity fields reconstructed from limited Lagrangian data. Optimal dispersion launch sites are found by tracking strongly hyperbolic singular points in the flow field. Lagrangian data from drifters launched from such locations are found to provide significant improvement in the reconstruction accuracy over similar but randomly located initial deployments. The eigenvalues of the hyperbolic singular points in the flow field determine the intensity of the local particle dispersion and thereby provide a natural timescale for initializing subsequent launches. Aligning the initial drifter launch in each site along an outflowing manifold ensures both high initial particle dispersion and the eventual sampling of regions of high kinetic energy, two factors that substantially affect the accuracy of the Eulerian reconstruction. Reconstruction error is reduced by a factor of ∼2.5 by using a co...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.