Abstract
The authors have performed distortionless atom imaging and force mapping experiments, under a large thermal drift condition at room temperature (RT), using frequency modulation atomic force microscopy (FM-AFM) that had been done previously only at low temperature. In the authors’ experimental scheme, three-dimensional position feedback with atom tracking detects the thermal drift velocity that is constant for a period of time at RT. The detected velocity is then used as the model for implementing the feedforward in order to compensate for the thermal drift. This technique can be expected to be used for precise positioning of the tip-sample in atom manipulation experiments using the FM-AFM at RT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.