Abstract
A semi-classical nonlinear collisional drift wave model for dense magnetized plasmas is developed and solved numerically. The effects of fluid electron density fluctuations associated with quantum statistical pressure and quantum Bohm force are included, and their influences on the collisional drift wave instability and the resulting fully developed nanoscale drift wave turbulence are discussed. It is found that the quantum effects increase the growth rate of the collisional drift wave instability, and introduce a finite de Broglie length screening on the drift wave turbulent density perturbations. The relevance to nanoscale turbulence in nonuniform dense magnetoplasmas is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.