Abstract

Gyrokinetic simulations of C-2-like field-reversed configuration (FRC) find that electrostatic drift-waves are locally stable in the core. The stabilization mechanisms include finite Larmor radius effects, magnetic well (negative grad-B), and fast electron short circuit effects. In the scrape-off layer (SOL), collisionless electrostatic drift-waves in the ion-to-electron-scale are destabilized by electron temperature gradients due to the resonance with locally barely trapped electrons. Collisions can suppress this instability, but a collisional drift-wave instability still exists at realistic pressure gradients. Simulation results are in qualitative agreement with C-2 FRC experiments. In particular, the lack of ion-scale instability in the core is not inconsistent with experimental measurements of a fluctuation spectrum showing a depression at ion-scales. The pressure gradient thresholds for the SOL instability from simulations are also consistent with the critical gradient behavior observed in experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call