Abstract

Pellet injection is used for fuelling and controlling discharges in tokamaks, and it is foreseen in ITER. During pellet injection, a movement of the ablated material towards the low-field side (or outward major radius direction) occurs because of the inhomogeneity of the magnetic field. Due to the complexity of the theoretical models, computer codes developed to simulate the cross-field drift are computationally expensive. Here, we present a one-dimensional semi-analytical model for the radial displacement of ablated material after pellet injection, taking into account both the Alfvén and ohmic currents which shortcircuit the charge separation creating the drift. The model is suitable for rapid calculation of the radial drift displacement, and can be useful for e.g. modelling of disruption mitigation via pellet injection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.