Abstract

A 1-D drift-diffusion modeling for impurity photovoltaics is presented. The model is based on the self-consistent solution of Poisson's equation and carrier continuity equations incorporating generation and recombination mechanisms including the intermediate states. The model is applied to a prototypical solar cell device, where strong space charge effects and reduced conversion efficiency are identified for the case of lightly doped absorption regions. A doping compensation scheme is proposed to mitigate the space charge effects, with optimal doping corresponding to one-half the concentration of the intermediate states. The compensated doping device design provides calculated conversion efficiencies of approximately 40%, which is similar to the maximum expected values from prior 0-D models. The carrier transport between intermediate levels is shown to be noncritical for achieving the efficiency limit predicted by 0-D models. The qualitative behavior of the model is compared to existing experimental data on quantum dot solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.