Abstract

In this paper, we report on the implementation and stability analysis of a drift-compensated frequency synthesizer from a cryogenic sapphire oscillator (CSO) designed for a Cs/Rb atomic fountain clock. The synthesizer has two microwave outputs of 7 and 9 GHz for Rb and Cs atom interrogation, respectively. The short-term stability of these microwave signals, measured using an optical frequency comb locked to an ultrastable laser, is better than $5 \times 10^{-15}$ at an averaging time of 1 s. We demonstrate that the short-term stability of the synthesizer is lower than the quantum projection noise limit of the Cs fountain clock, KRISS-F1(Cs) by measuring the short-term stability of the fountain with varying trapped atom number. The stability of the atomic fountain at 1 s averaging time reaches $2.5 \times 10^{-14}$ at the highest atom number in the experiment when the synthesizer is used as an interrogation oscillator of the fountain. In order to compensate the frequency drift of the CSO, the output frequency of a waveform generator, in the synthesis chain, is ramped linearly. By doing this, the frequency stability of the synthesizer at an average time of one hour reaches a level of $10^{-16}$ , which is measured with the fountain clock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call