Abstract

Dried blood spot (DBS) technology was evaluated for the quantitative determination of guanfacine in human blood in clinical studies. A very sensitive DBS assay has been developed using HPLC coupled with an AB Sciex 5500 QTRAP® (Applied Biosystems/MDS Sciex, ON, Canada) MS system (LC-MS/MS) with a linear calibration range of 0.05 to 25 ng/ml. High-resolution MS using an Exactive Orbitrap® (ThermoFisher, LLC., CA, USA) was compared with the QTRAP using extracted exact mass ion current profiles for guanfacine and its stable-isotope-incorporated internal standard. The sample preparation employed liquid-liquid extraction with methyl t-butyl ether of 5 mm punched DBS card disks, followed by reversed-phase HPLC separation coupled with either MS/MS or high-resolution MS. Routine experiments were performed to establish the robustness of the DBS assay, including precision, accuracy, linearity, selectivity, sensitivity and long-term stability of up to 76 days. In addition, several factors that potentially affect quantitation were investigated, including blood volume for DBS spotting, punch size and punch location. A sensitive research assay with a LLOQ of 0.05 ng/ml was developed and subjected to several components of a method validation common to a regulated bioanalysis procedure employing DBS. This method development and partial validation study determined that spot volume, punch size or punch location do not affect assay accuracy and precision. The DBS approach was successfully applied to a clinical study (a Phase I, randomized, double-blind, placebo-controlled, crossover study to assess the effect of varying multiple oral doses of guanfacine on the pharmacokinetic, pharmacodynamic, safety, and tolerability profiles in healthy adult subjects). The pharmacokinetic profiles for 12 volunteers generated from the DBS assay and from a previously validated plasma assay were compared and were found to be comparable. DBS incurred samples collected from finger prick blood and directly applied to the DBS cards were also analyzed for comparison. From a bioanalytical perspective, DBS sample collection and analysis is a potentially viable alternative for guanfacine determination in clinical studies, utilizing approximately 100 µl of blood per subject profile compared with a few millilitres of blood drawn for conventional plasma bioanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.