Abstract

This paper presents the design, fabrication, and performance of a micromachined silicon thermal wind sensor with improved sensitivity. Deep reactive ion etching (DRIE) trenches are fabricated between the heater and the thermistors to suppress the lateral heat conduction in the chip. In addition, eight thermistors symmetrically arranged in four directions around the heater form two Wheatstone full-bridges, resulting in about 50% increase of the sensitivity with respect to four thermistors. Based on these two methods, the sensitivity of the micromachined silicon thermal wind sensor is improved remarkably, which is verified by the experiment. The results show that the measurement wind speed range is up to 33 m/s in constant voltage (CV) mode with the initial heating power of 256 mW. The sensitivity is measured to be 29.37 mV/ms <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> at the wind speed 3.3 m/s, achieving improvement of about 226%, compared with that of the traditional wind sensor. Wind direction measurement results show that airflow direction over the full range of 360° is determined with an accuracy of ±5°. [2017-0052].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.