Abstract

AbstractBased on the theory of integrable boundary conditions (BCs) developed by Sklyanin, we provide a direct method for computing soliton solutions of the focusing nonlinear Schrödinger equation on the half‐line. The integrable BCs at the origin are represented by constraints of the Lax pair, and our method lies on dressing the Lax pair by preserving those constraints in the Darboux‐dressing process. The method is applied to two classes of solutions: solitons vanishing at infinity and self‐modulated solitons on a constant background. Half‐line solitons in both cases are explicitly computed. In particular, the boundary‐bound solitons, which are static solitons bounded at the origin, are also constructed. We give a natural inverse scattering transform interpretation of the method as evolution of the scattering data determined by the integrable BCs in space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.