Abstract

We study the control of high-precision three-dimensional (3D) atom localization by measuring the population of the excited state in a ladder-type three-level atomic system driven by a weak probe field and a control field, together with three mutually perpendicular standing-wave fields. We find that the precision of 3D atom localization in volumes depends sensitively on the frequency detuning of the probe field and the intensity of the control field. Most importantly, we show that adjusting the phase shifts associated with the standing-wave fields leads to a redistribution of the atoms and a significant change of the atomic coherence, so that the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call