Abstract

The Schwinger-Dyson equation for the quark in the rainbow approximation at finite temperature (T) is solved numerically without introducing any ansatz for the dressed quark propagator. The dymanical quark mass-function and the wave-function renormalization are found to have non-trivial dependence on three-momentum, Matsubara-frequency and temperature. The critical temperature of the chiral phase transition (T_c) and the T-dependence of the quark condensate are highly affected by the wave-function renormalization. We found that T_c \simeq 155 MeV which is consistent with the result of the finite temperature lattice QCD simulation. It is also found that the system is not a gas of free quarks but a highly interacting system of quarks and gluons even in the chirally symmetric phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.