Abstract

We investigate the way to control multi-wave mixing (MWM) process in Rydberg atoms via the interaction between Rydberg blockade and light field dressing effect. Considering both of the primary and secondary blockades, we theoretically study the MWM process in both diatomic and quadratomic systems, in which the enhancement, suppression and avoided crossing can be affected by the atomic internuclear distance or external electric field intensity. In the diatomic system, we also can eliminate the primary blockade by the dressing effect. Such investigations have potential applications in quantum computing with Rydberg atom as the carrier of qubit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.