Abstract

Quantum Systems Solid-state qubits based on the electron spin of defects in silicon carbide or diamond provide a robust and versatile architecture for developing quantum technologies. The longer the lifetime of a spin, the more manipulations and quantum calculations can be performed, making for a more powerful quantum computational platform. Miao et al. show that by dressing the spins associated with the divacancy in silicon carbide with microwave photons, the lifetime can be extended by several orders of magnitude into milliseconds (see the Perspective by Hemmer). The technique effectively creates a quiet space for the qubit, thereby protecting it from magnetic, electric, and temperature fluctuations. This approach could be applicable to other architectures and provide a universal route to protecting qubits. Science , this issue p. [1493][1]; see also p. [1432][2] [1]: /lookup/doi/10.1126/science.abc5186 [2]: /lookup/doi/10.1126/science.abe1521

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.