Abstract

The techniques of matrix dressing for configuration-interaction (CI)-type or coupled-electron-pair-approximation (CEPA)-type correlation treatments are reviewed with respect to the application to periodic systems. All methods ranging from canonical second-order Moller–Plesset perturbation theory over CI of single and double excitation, CEPA-0 or the averaged-coupled-pair-functional to self-consistent size-consistent CI can be formulated completely equivalently as an eigenvalue problem or as a solution to a system of linear equations. The size consistency of each method is obtained in a natural way, and invariance under orbital rotations is clearly assessible. A remark on the size consistency of the Davidson correction is presented. Additionally, the direct generation of localized Hartree–Fock orbitals as basic ingredients for the correlation calculations are addressed, as well as selected results on ring molecules, polymers, and 3D cubic beryllium as a model crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.