Abstract

LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, configuring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) optimal configurations are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting configurations to workload and hardware, and evaluating quickly. We present a system, Dremel, to adaptively and quickly configure RocksDB with strategies based on the Multi-Armed Bandit model. To handle the large parameter space, we propose using fused features, which encode domain-specific knowledge, to work as a compact and powerful representation for configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling to speed up configuration search. Dremel not only achieves up to ×2.61 higher IOPS and 57% less latency than default configurations but also achieves up to 63% improvement over prior works on 18 different settings with the same or smaller time budget. This paper is an abridged version.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.