Abstract

Interactive control of self-balancing, physically simulated humanoids is a long standing problem in the field of real-time character animation. While physical simulation guarantees realistic interactions in the virtual world, simulated characters can appear unnatural if they perform unusual movements in order to maintain balance. Therefore, obtaining a high level of responsiveness to user control, runtime performance, and diversity has often been overlooked in exchange for motion quality. Recent work in the field of deep reinforcement learning has shown that training physically simulated characters to follow motion capture clips can yield high quality tracking results. We propose a two-step approach for building responsive simulated character controllers from unstructured motion capture data. First, meaningful features from the data such as movement direction, heading direction, speed, and locomotion style, are interactively specified and drive a kinematic character controller implemented using motion matching. Second, reinforcement learning is used to train a simulated character controller that is general enough to track the entire distribution of motion that can be generated by the kinematic controller. Our design emphasizes responsiveness to user input, visual quality, and low runtime cost for application in video-games.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call