Abstract

Alveolar septation increases gas-exchange surface area and requires coordinated cytoskeletal rearrangement in lung fibroblasts (LFs) to balance the demands of contraction and cell migration. We hypothesized that DBN (drebrin), a modulator of the actin cytoskeleton in neuronal dendrites, regulates the remodeling of the LF cytoskeleton. Using mice bearing a transgelin-Cre-targeted deletion of Dbn in pulmonary fibroblasts and pericytes, we examined alterations in alveolar septal outgrowth, LF spreading and migration, and actomyosin function. The alveolar surface area and number of alveoli were reduced, whereas alveolar ducts were enlarged, in mice bearing the dbn deletion (DBNΔ) compared with their littermates bearing only one dbn-Flox allele (control). Cultured DBNΔ LFs were deficient in their responses to substrate rigidity and migrated more slowly. Drebrin was abundant in the actin cortex and lamella, and the actin fiber orientation was less uniform in lamella of DBNΔ LFs, which limited the development of traction forces and altered focal adhesion dynamics. Actin fiber orientation is regulated by contractile NM2 (nonmuscle myosin-2) motors, which help arrange actin stress fibers into thick ventral actin stress fibers. Using fluorescence anisotropy, we observed regional intracellular differences in myosin regulatory light chain phosphorylation in control LFs that were altered by dbn deletion. Using perturbations to induce and then release stalling of NM2 on actin in LFs from both genotypes, we made predictions explaining how DBN interacts with actin and NM2. These studies provide new insight for diseases such as emphysema and pulmonary fibrosis, in which fibroblasts inappropriately respond to mechanical cues in their environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call