Abstract

The dystonias are a clinical heterogeneous group with a complex genetic background. To gain more insight in genetic risk factors in dystonia we used a pathway sequence approach in patients with an extreme dystonia phenotype (n = 26). We assessed all coding and non-coding variants in candidate genes in D1-like subclass of dopamine receptor genes (DRD1, DRD5) and the synaptic vesicle pathway linked to torsinA (TOR1A, STON2, SNAPIN, KLC1 and THAP1), spanning 96 Kb. Two rare missense variants in DRD1 were found: c.68G>A(p.Arg23His) in the screening group and c.776C>A(p.Ser259Tyr) in an additional screen of 15 selected dystonia patients. Genetic burden analysis of DRD1 rare variants in patients (4.8%) versus European American controls from ESP (0.72%) reveals an OR 5.35 (95% CI 1.29-23.1). No rare missense SNVs in the synaptic vesicle pathway were found. Sequencing of TOR1A showed variant enrichment in haplotype 2, possibly accountable for contradictive results in previous association studies. Two new rare SNVs were detected in THAP1, including a nonsense mutation (p.Gln167Ter) and a splice site variant (c.72-1G>A). Screening for rare SNV of candidate pathways in a phenotype extreme population appears to be a promising alternative method to identify genetic risk factors in complex disorders like primary torsion dystonia. These findings indicate a role for rare genetic variation in dopamine processing genes in dystonia pathophysiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.