Abstract
DNA-binding and RNA-binding proteins are essential to an organism's normal life cycle. These proteins have diverse functions in various biological processes. DNA-binding proteins are crucial for DNA replication, transcription, repair, packaging, and gene expression. Likewise, RNA-binding proteins are essential for the post-transcriptional control of RNAs and RNA metabolism. Identifying DNA- and RNA-binding residue is essential for biological research and understanding the pathogenesis of many diseases. However, most DNA-binding and RNA-binding proteins still need to be discovered. This research explored various properties of the protein sequences, such as amino acid composition type, Position-Specific Scoring Matrix (PSSM) values of amino acids, Hidden Markov model (HMM) profiles, physiochemical properties, structural properties, torsion angles, and disorder regions. We utilized a sliding window technique to extract more information from a target residue's neighbors. We proposed an optimized Light Gradient Boosting Machine (LightGBM) method, named DRBpred, to predict DNA-binding and RNA-binding residues from the protein sequence. DRBpred shows an improvement of 112.00 %, 33.33 %, and 6.49 % for the DNA-binding test set compared to the state-of-the-art method. It shows an improvement of 112.50 %, 16.67 %, and 7.46 % for the RNA-binding test set regarding Sensitivity, Mathews Correlation Coefficient (MCC), and AUC metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.