Abstract

Mice that are genetically deficient in UDP-galactose: ceramide galactosyltransferase are unable to synthesize galactosylceramide. Consequently, sulfatide, which can be synthesized only by sulfation of galactosylceramide, is also totally absent in affected mouse brain. Alpha-hydroxy fatty acid-containing glucosylceramide partially replaces the missing galactosylceramide. A substantial proportion of sphingomyelin, which normally contains only non-hydroxy fatty acids, also contains alpha-hydroxy fatty acids. These findings indicate that alpha-hydroxy fatty acid-containing ceramide normally present only in galactosylceramide and sulfatide is diverted to other compounds because they cannot be synthesized into galactosylceramide due to the lack of the galactosyltransferase. We have examined brain gangliosides in order to determine if alpha-hydroxy fatty acid-containing glucosylceramide present in an abnormally high concentration is also incorporated into gangliosides. The brain ganglioside composition, however, is entirely normal in both the total amount and molecular distribution in these mice. One feasible explanation is that UDP-galactose: glucosylceramide galactosyltransferase does not recognize alpha-hydroxy fatty acid-containing glucosylceramide as acceptor. This analytical finding is consistent with the relative sparing of gray matter in the affected mice and provides an insight into sphingolipid metabolism in the mouse brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call