Abstract

It is unclear how and when insoluble beta-amyloid in senile plaques exerts degenerative effects on distant hippocampal neurons in Alzheimer's disease. Racemization of Ser and Asp residues of insoluble beta-amyloid is a typical age-dependent process. In this study, we investigated the fibril formation activity and cytotoxic activity of beta-amyloid 1-40 racemized at the Asp or Ser residue. In contrast to beta-amyloid 1-40 and its derivative substituted with the D-Asp(1, 7 or 23) or D-Ser(8) residue, [D-Ser(26)]beta-amyloid 1-40 was non-toxic to PC12 cells, and did not exhibit significant fibril formation activity making it soluble. However, [D-Ser(26)]beta-amyloid 1-40, but not beta-amyloid 1-40, was converted in vitro to a potent neurotoxic and truncated peptide, [D-Ser(26)]beta-amyloid 25-35 or [D-Ser(26)]beta-amyloid 25-40, by chymotrypsin-like enzymes and aminopeptidase M. Soluble [D-Ser(26)]beta-amyloid 1-40 was injected into rat hippocampus with a non-toxic dose of ibotenic acid, an excitatory amino acid. Nissl staining and microtubule-associated protein-2 immunostaining revealed that [D-Ser(26)]beta-amyloid 1-40, as well as [D-Ser(26)]beta-amyloid 25-35, produced a drastic degeneration of the CA1 neurons with ibotenic acid although [D-Ser(26)]beta-amyloid 1-40 alone or ibotenic acid alone did not exert neuronal damage. This suggests the in vivo conversion of non-toxic [D-Ser(26)]beta-amyloid 1-40 to the toxic and truncated peptides which enhance the susceptibility of neurons to the excitatory amino acid.These results and the presence of [D-Ser(26)]beta-amyloid 25-35-like antigens in Alzheimer's disease brains suggest that soluble [D-Ser(26)]beta-amyloid 1-40, possibly formed during the aging process, is released from senile plaques, and converted by brain proteinases to truncated [D-Ser(26)]beta-amyloid 25-35(40)-like peptides, which degenerate hippocampal neurons by enhancing the susceptibility to excitatory amino acids in Alzheimer's disease brains. These findings may provide the basis for a new therapeutic approach to prevent the neurodegeneration in Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.