Abstract

This study shows that the backbone conformation of head-to-head type 3,3'-dialkyl-2,2'-bithiophene can be tuned via fluorination of the neighboring benzothiadiazole (BTz). Without fluorination, the polymer backbone is highly twisted, whereas difluorination of BTz produced a coplanar backbone. Monofluorination of BTz yielded a tunable polymer backbone conformation depending on the film annealing temperature. In organic thin-film transistors, the polymer with the head-to-head linkages showed a remarkable hole mobility of >0.5 cm2 V-1 s-1 upon attaining a planar backbone. Thus, the head-to-head linkage does not necessarily lead to backbone nonplanarity, and achieving planar conformation of 3,3'-dialkyl-2,2'-bithiophene has profound implications in materials design for organic semiconducting devices, yielding good solubility, reduced materials synthetic steps, and improved opto-electrical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.