Abstract

In this paper, 4-node quadrilateral and 3-node triangular solid-shell elements are applied to drape simulations. With locking issues alleviated by the assumed natural strain method and plane-stress enforcement, static and dynamic drape problems are attempted by the quadrilateral element. If the drape is deep and the mesh density is inadequate, non-realistic sharp folds are predicted due to the non-physical interpenetration of top and bottom element surfaces. To avoid the interpenetration, a reversible adaptive subdivision based on the 1–4 splitting method is developed. To ensure displacement compatibility among elements at different subdivision levels, macro-transition elements are formed by quadrilateral and triangular solid-shell elements. To reduce the dynamic oscillation induced by newly inserted nodes, the discrete Kirchhoff condition is employed to determine the related nodal variables. Dynamic drape examples using adaptive meshing are presented. It can be seen that the predictions look realistic and deep drapes can be predicted with the interpenetration avoided yet the required number of nodes can be kept relatively small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.