Abstract

The effects of defatted soybean and/or iodine-deficient diet feeding were investigated in female F344 rats. Rats were divided into four groups, each consisting of 10 animals, and fed basal AIN-93G diet in which the protein was exchanged for 20% gluten (Group 1), iodine-deficient gluten (Group 2), 20% defatted soybean (Group 3) and iodine-deficient defatted soybean (Group 4). At week 10, relative thyroid gland weights (mg/100 g body wt) were significantly (P < 0.01) higher in Groups 2 (15.5 +/- 1.3) and 4 (81.7 +/- 8.6) than in Group 1 (8.4 +/- 2.0) and pituitary gland weights (mg/100 g body wt) were significantly (P < 0.01) higher in Groups 3 (9.1 +/- 0. 6) and 4 (9.7 +/- 1.5) than in Group 1 (6.5 +/- 1.5). Serum biochemical assays revealed thyroxine to be significantly (P < 0.05) lower in Groups 2 and 4 than in Group 1. On the other hand, serum thyroid-stimulating hormone (TSH) was significantly (P < 0.01) higher in Groups 3 and 4 than in Group 1. This was particularly striking for TSH (ng/ml) at week 10 in Group 4 (126 +/- 11) as compared with Groups 1 (4.36 +/- 0.30), 2 (4.84 +/- 0.80) and 3 (5. 78 +/- 0.80). Histologically, marked diffuse follicular hyperplasia of the thyroid was evident in Group 4 rats. Proliferating cell nuclear antigen labeling indices (%) were significantly higher (P < 0.05) in Groups 2 (4.8 +/- 2.5) and 4 (13.2 +/- 1.1) than in Group 1 (0.4 +/- 0.5). Ultrastructurally, severe disorganization and disarrangement of mitochondria were apparent in thyroid follicular cells of Group 4. In the anterior pituitary, dilated rough surfaced endoplasmic reticulum and increased secretory granules were remarkable in this group. Our results thus strongly suggest that dietary defatted soybean synergistically stimulates the growth of rat thyroid with iodine deficiency, partly through a pituitary-dependent pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.