Abstract
The vitrification process is usually preceded by a significant change (around 6-8 decades) in the viscosity, structural relaxation times, or diffusion that occurs in a relatively small range of temperatures in fragile liquids. Along with this phenomenon, conformations of the molecules vary as well. In fact, this process is studied in bulk polymers and high molecular weight materials deposited in the form of thin films. On the other hand, spatial rearrangement of small glass formers in the supercooled liquid state has not been intensively investigated, so far. Herein, data obtained from measurements carried out using various experimental techniques on supercooled 1,2,3,4,6-penta-O-(trimethylsilyl)-d-glucopyranose (S-GLU) have revealed that rotations of silyl moieties along with the deformation in the saccharide ring are significantly slowed down in the vicinity of the glass transition temperature (Tg). These intramolecular reorganizations affect the structural relaxation time, atomic pair distribution function, integrated intensity, as well as a number of bands and signals observed, respectively, in the Raman and NMR spectra. Data reported herein offer a better understanding of the conformational variation and time scale of this process in the complex and flexible molecules around the Tg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.