Abstract

Benthic habitats harbour a significant (yet unexplored) diversity of microscopic eukaryote taxa, including metazoan phyla, protists, algae and fungi. These groups are thought to underpin ecosystem functioning across diverse marine environments. Coastal marine habitats in the Gulf of Mexico experienced visible, heavy impacts following the Deepwater Horizon oil spill in 2010, yet our scant knowledge of prior eukaryotic biodiversity has precluded a thorough assessment of this disturbance. Using a marker gene and morphological approach, we present an intensive evaluation of microbial eukaryote communities prior to and following oiling around heavily impacted shorelines. Our results show significant changes in community structure, with pre-spill assemblages of diverse Metazoa giving way to dominant fungal communities in post-spill sediments. Post-spill fungal taxa exhibit low richness and are characterized by an abundance of known hydrocarbon-degrading genera, compared to prior communities that contained smaller and more diverse fungal assemblages. Comparative taxonomic data from nematodes further suggests drastic impacts; while pre-spill samples exhibit high richness and evenness of genera, post-spill communities contain mainly predatory and scavenger taxa alongside an abundance of juveniles. Based on this community analysis, our data suggest considerable (hidden) initial impacts across Gulf beaches may be ongoing, despite the disappearance of visible surface oil in the region.

Highlights

  • The Deepwater Horizon (DH) oil spill, commencing on April 20, 2010 and lasting for 89 days, represents one of the most dramatic anthropogenic impacts ever to hit the marine environment

  • High-quality reads were clustered into Operational Taxonomic Units (OTUs) with stringency ranging from 95–99% pairwise identity and analysed within multiple bioinformatic pipelines to investigate and confirm biological inferences

  • None of our community structure analyses recovered a close relationship between paired pre- and post-spill replicates; instead, post-spill sites formed distinct groupings in both Principal Coordinate Analysis (PCoA) and Jackknife Cluster analysis

Read more

Summary

Introduction

The Deepwater Horizon (DH) oil spill, commencing on April 20, 2010 and lasting for 89 days, represents one of the most dramatic anthropogenic impacts ever to hit the marine environment. We presently have scarce knowledge of biogeographic patterns or community structure for these ‘invisible’ taxa in the Gulf of Mexico region, precluding any informed mitigation and remediation of sudden environmental impacts such as the DH oil spill. Determining post-spill foci and priorities in the Gulf of Mexico requires knowledge of historic patterns of biodiversity. Microbial eukaryotes inherently underpin all higher trophic levels, and understanding the biological impact and subsequent recovery of these communities is critical for interpreting the longterm effects of the DH oil spill. To investigate the impacts of heavy beach oiling that occurred during the DH spill, we utilized parallel marker gene and taxonomic approaches to characterize microbial eukaryote communities inhabiting beach sediments prior to and following shoreline oiling. Temporal community patterns were compared across all approaches utilized, including denoising of pyrosequencing data [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.