Abstract

Ab initio calculations are used to study the reduction of the work functions of tungsten (W) surfaces with one monolayer of adsorbed barium (Ba) and lithium atoms. We have carefully and systematically test the convergence of density-functional-theory (DFT) calculations in the local-density approximation or generalized-gradient approximation with a plane-wave basis set and ultra-soft pseudopotentials or the projector-augmented wave method as implemented in Vienna ab-initio simulation package. The DFT calculation shows that the work function of the Ba adsorbed onto a p(2times2) W(001) substrate is dramatically lowered by about 2.2 eV, provided that the fourfold hollow sites are occupied. With this approach, one can investigate more complex adsorbates onto the cathode surface of different materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.