Abstract

Recently, there has been considerable interest in the perovskite phase Na0.5Bi0.5TiO3 (NBT) as a promising lead-free piezoelectric material. Here we report low levels of Na nonstoichiometry (±2 atom % on the A-site) in the nominal starting composition of NBT ceramics can lead to dramatic changes in the magnitude of the bulk (grain) conductivity (σb) and the conduction mechanism(s). Nominal starting compositions with Na excess exhibit high levels of oxide-ion conduction with σb ∼ 2.2 mS cm–1 at 600 °C and an activation energy (Ea) < 1 eV whereas those with Na deficiency are dielectrics based on intrinsic electronic conduction across the band gap with σb ∼ 1.6 μS cm–1 at 600 °C and Ea ∼ 1.7 eV. Drying of reagents, especially Na2CO3, changes the starting stoichiometry slightly due to a small amount of adsorbed moisture in the raw materials but influences significantly the electrical properties. This demonstrates the bulk electrical properties of NBT to be highly sensitive to low levels of A-site nonstoichiom...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.