Abstract

Dendritic cell (DC)-based vaccination is a promising approach to enhance anti-tumor immunity that could be considered for acute myeloid leukemia (AML) patients with high-risk of relapse. Our purpose was to study the efficiency and to optimize the immunogenicity of a DC-based vaccine in a preclinical AML murine model. In this report, C57BL6 mice were vaccinated with DC pulsed with peptides eluted (EP) from the syngeneic C1498 myelomonocytic leukemic cell line in a prophylactic setting. In this model, a natural antileukemic immunity mediated by NK cells was observed in the control unloaded DC-vaccinated group. On the other hand, we showed that the cytotoxic antileukemic immune response induced by vaccination with eluted peptides pulsed-DC (DC/EP), in vitro and in vivo, was mainly mediated by CD4(+) T cells. Treatment with anti-CD25 antibody to deplete CD4(+) CD25(+) regulatory T cells before DC-vaccination dramatically improved the antileukemic immune response induced by immunization, and allowed the development of long-lasting immune responses that were tumor protective after a re-challenge with leukemic cells. Our results suggest that this approach could be successful against weakly immunogenic tumors such as AML, and could be translated in human.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.