Abstract

To characterize the sulfated proteoglycans (PGs) alterations associated with malignant transformation of epithelial cells in vitro, the localization, charge, size, and composition of cell-associated and secreted sulfated PGs have been compared in rabbit renal proximal-tubule cells in primary culture (Ronco et al., 1990) and in a derived SV-40 transformed cell line (RC.SV1) exhibiting a proximal phenotype and high tumor-inducing ability (Vandewalle et al., 1989). Both normal and transformed cells incorporated PGs into a thick basement membrane layer as shown by ruthenium red staining and immunodetection with a monoclonal antibody raised against the core protein of the bovine basement membrane heparan sulfate-PG (HS-PG). In primary cultures of normal cells, cell-associated PGs were almost identical to those extracted from renal tubule fractions in vivo by their size (Kav = 0.27 vs. 0.26 on Sepharose CL-6B) and composition characterized by the exclusive presence of heparan sulfate glycosaminoglycan (HS-GAG) chains. In addition, the cells secreted a HS-PG with similar biochemical characteristics (Kav = 0.29; 100% HS-GAG chains). The SV-40-transformed RC.SV1 cells also synthesized and secreted a unique PG with the same charge and Kav values and apparently the same core protein (35 kDa) as in nontransformed cells, but three major differences were observed: (i) an increased proportion of PG-associated [35S]sulfate radioactivity released into the culture medium (36 vs. 21%), (ii) the emergence of free GAG chains unincorporated into PGs and detected only in the cell-associated fraction, and (iii) a dramatic change in the composition of GAG chains in which chondroitin sulfate replaced heparan-sulfate. The latter finding is in keeping with the known chondroitin sulfate increase and heparan-sulfate decrease in epithelial tumors. The alterations of PGs observed in this study may play a role in the acquisition and/or maintenance of the malignant phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call