Abstract

Four different methods of representing drain tubes in finite elements for field drainage problems were studied. A finite‐element solution to the Richards equation was used to compare the performance of each method for three conditions: flow to parallel drains from a ponded surface, transient drainage, and flow to and past an interceptor drain. Differences in predictions of hydraulic heads and drain flow rates were found among the four methods. A method using logarithmically varying adjustment factors for hydraulic conductivity and a modified grid system in the vicinity of the drain was found to be relatively easy to implement and to produce accurate estimates of drain flow rates and hydraulic heads for the drainage problems simulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.