Abstract
Cemented paste backfill (CPB) has been widely used as local and regional underground support to reduce host rock wall closure in mined-out areas and also to reduce rockfall and rockburst incidents. However, analyzing the rock mass—CPB interactions in the first month after backfill placement must account for the CPB’s time-dependent strength, stiffness, and volume change characteristics during binder hydration. This article presents the first such comprehensive study made for CPB from the Williams mine in Ontario, Canada. Monotonic isotopically consolidated drained compressive triaxial tests were conducted on cured CPB specimens using the lubricated-ends test technique. The specimens had 3.0–7.5% Cement Content (CC); Curing Times (CTs) were from 3 to 28 days; and the confining stress ranged from 25 to 350 kPa. During shearing, all tests exhibited an initial contractive phase leading to a Characteristic State (CHS or point of volumetric strain reversal) followed by dilation with a maximum dilation rate corresponding to peak stress at the Failure State (FS). Both CHS and FS are adequately described by the Mohr–Coulomb criterion and a framework formulation was proposed to predict the evolution of CHS and FS based on CC and CT. Furthermore, the volumetric strains at CHS and FS can be defined as linear functions of the respective axial strains at the CHS and FS. Quantification of the observed behaviors through these functional relationships can help develop future constitutive models that better represent CPB’s transient response to triaxial stress loading while curing, which is essential to understanding as-placed backfill properties and its interaction with surrounding rock mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.