Abstract

Reverse gate-leakage of the AlGaN/GaN heterostructure field-effect transistors (HFETs) is studied at different values of drain–source voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {DS}}$ </tex-math></inline-formula> ), ranging from 0 to 10 V. Throughout the investigated range of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {DS}}$ </tex-math></inline-formula> , the reported analysis confirms the applicability of the Fowler–Nordheim (FN) tunneling as the dominant contributor to the gate-leakage for reverse gate biases until the onset of the threshold voltage. Device simulations were performed using Comsol Multiphysics to estimate the electric field ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$E\,\,$ </tex-math></inline-formula> ) across the polar III-nitride barrier layer at different positions along the gate length. We observe that the FN tunneling takes place predominantly corresponding to the average electric field observed to be close to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E} $ </tex-math></inline-formula> at the center of the gate for lower values of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {DS}}$ </tex-math></inline-formula> , whereas at larger values of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {DS}}$ </tex-math></inline-formula> , FN tunneling corresponding to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${E}$ </tex-math></inline-formula> only at the drain edge of the gate seems poised to deliver the gate-leakage current. In formulating the FN tunneling, the value of the electron effective mass is selected consistently within an acceptable range for analyzing gate-leakage. Investigating the applicability of FN tunneling in explaining the reverse gate-leakage current of AlGaN/GaN HFETs for the aforementioned values of gate to source voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {GS}}$ </tex-math></inline-formula> ) not just at zero <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {DS}}$ </tex-math></inline-formula> , but across a range of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {DS}}$ </tex-math></inline-formula> values, seems to offer a more convincing argument for the hypothesis on tunneling through small leakage zones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call